DEFENCE SERVICES ACADEMY
 ENTRANCE EXAMINATION
 MATHEMATICS

Date: 19-8-2018

ANSWER ALL QUESTIONS
 PART (A)

1. Choose the correct or the most appropriate answer for each question. Write the letter of the correct or the most appropriate answer. (22 Marks)
(1) Functions f and g are given by $f(x)=2 x$ and $g(x)=x+3$. If $(g \circ f)^{-1}(t)=1$, then $\mathrm{t}=$
A. -5
B. -3
C. 2
D. 3
E. 5
(2) It is given that the remainder is 178 when $x^{n}-5 x^{2}-20$ is divided by $x-3$, then the value of n is
A. -4
B. 4
C. 3
D. -3
E. 5
(3) ${ }^{n} \mathrm{C}_{0}+{ }^{\mathrm{n}} \mathrm{C}_{1}+{ }^{\mathrm{n}} \mathrm{C}_{\mathrm{n}}=$
A. n
B. $\mathrm{n}+1$
C. 2
D. $n+2$
E. none of these
(4) Given that $7, a, b, c,-5$ in an A.P., then the mean of a, b, c is
A. -2
B. 1
C. $\frac{3}{2}$
D. 3
E. 4
(5) The matrix $\mathrm{M}=\left(\begin{array}{cc}\mathrm{a} & 4 \\ 16 & \mathrm{~b}\end{array}\right)$ is singular and a, b are positive integers. Then $a+b$ cannot be
A. 16
B. 20
C. 34
D. 48
E. 65
(6) If A is an event such that $P(A)=x$ and $P(\operatorname{not} A)=y$, then $x^{3}+y^{3}=$
A. $3 x y$
B. $1+3 x y$
C. $3 x y-1$
D. 1-3xy
E. none of these
(7) Chords AB and CD of a circle intersect at P within the circle. If $\mathrm{AP}=\mathrm{x}$, $\mathrm{PB}=\mathrm{x}-2, \mathrm{CP}=8$ and $\mathrm{PD}=3$, then $\mathrm{x}=$
A. 2
B. 3
C. 4
D. 5
E. 6
(8) If $\triangle \mathrm{ABC} \square \Delta \mathrm{PQR}, \quad \alpha(\Delta \mathrm{ABC})+\alpha(\Delta \mathrm{PQR})=75 \mathrm{~cm}^{2}, \mathrm{AB}$ and PQ are corresponding sides and $\mathrm{AB}: \mathrm{PQ}=4: 3$, then $\alpha(\triangle \mathrm{ABC})$, in cm^{2}, is
A. 25
B. 27
C. 36
D. 48
E. 50
(9) Given that $\overrightarrow{\mathrm{a}}=3 \hat{\mathrm{i}}+4 \hat{\mathrm{j}}$. Then the vector with magnitude 20 units and in the direction of \vec{a} is
A. $9 \hat{i}+12 \mathrm{j}$
B. $60 \hat{\mathrm{i}}+120 \mathrm{j}$
C. $21 \hat{\mathrm{i}}+28 \mathrm{j}$
D. $12 \hat{i}+16 \mathrm{j}$
E. $-12 \hat{i}-16 \mathrm{j}$
(10) If $\mathrm{A}, \mathrm{B}, \mathrm{C}$ are the angles of a triangle and $\tan \mathrm{A}=3$ and $\tan \mathrm{B}=2$, then $\tan \mathrm{C}=$
A. 1
B. 2
C. 3
D. 4
E. 5
(11) The gradient of the tangent line to the curve $y=a x^{2}-4 x+3$ at the point $x=1$ is -2 . The value of a is
A. 3
B. 2
C. 1
D. -3
E. 4
P.T.O.

PART (B)

2. (a) The functions f and g are defined for real x by $f(x)=2 x-1$ and $\mathrm{g}(\mathrm{x})=2 \mathrm{x}+3$. Evaluate $\left(\mathrm{g}^{-1} \circ \mathrm{f}^{-1}\right)(2)$.
(6 marks)
(b) Given $f(x)=x^{3}+\mathrm{px}^{2}-2 x+4 \sqrt{3}$ has a factor $x+\sqrt{2}$, find the value of p. Show that $x-2 \sqrt{3}$ is also a factor and solve the equation $f(x)=0$.
(7 marks)
3. (a) If the $2^{\text {nd }}$ and the $3^{\text {rd }}$ term in $(a+b)^{\text {n }}$ are in the same ratio as the $3^{\text {rd }}$ and $4^{\text {th }}$ in $(a+b)^{n+3}$, then find n.
(6 marks)
(b) Use graphical method to find the solution set of the inequation $2 x(x-1)<3-x$ and illustrate it on the number line.
(7 marks)
4. (a) The three numbers a,b,c between 2 and 18 are such that their sum is 25 , the numbers $2, \mathrm{a}, \mathrm{b}$ are consecutive terms of an arithmetic progression, and the numbers $b, c, 18$ are consecutive terms of a geometric progression. Find the three numbers.
(6 marks)
(b) Find the inverse of $\left(\begin{array}{cc}\cos \theta & \sin \theta \\ -\sin \theta & \cos \theta\end{array}\right)$ by using the definition of inverse of matrix.
(7 marks)
5. (a) A die is rolled 360 times. Find the expected frequency of a factor of 6 and the expected frequency of a prime number. If all the scores obtained in these 360 trails are added together, what is the expected total score?
(6 marks)
(b) PQR is a triangle in which $\mathrm{PQ}=\mathrm{PR} . \mathrm{S}$ is a point inside the triangle such that $\angle \mathrm{SPQ}=\angle \mathrm{SQR} . \mathrm{T}$ is the point on QS produced such that $\mathrm{PT}=\mathrm{PS}$. Prove that PQRT is cyclic.
(7 marks)
6. (a) In the figure $\angle \mathrm{PST}=\angle \mathrm{PRQ}, \mathrm{PS}: \mathrm{SQ}=3: 1$ and $\mathrm{PT}: \mathrm{TR}=1: 2$. If $\mathrm{PT}=2$, find the length of PS and the ratios of $\alpha(\triangle \mathrm{PST}): \alpha(\triangle \mathrm{PQR})$ and $\alpha(\Delta \mathrm{PST}): \alpha(\mathrm{QRTS})$.

(6 marks)
(b) The position vectors of A and B relative to an origin O are $\binom{5}{15}$ and $\binom{13}{3}$ respectively. Given that C lies on $A B$ and has position vector $\binom{2 t+1}{t+1}$, find the value of t and the ratio $A C: C B$.
(7 marks)
7. (a) If $x+y+z=\pi$, show that
$\cos \frac{\mathrm{x}}{2}+\cos \frac{\mathrm{y}}{2}+\cos \frac{\mathrm{z}}{2}=4 \cos \frac{\mathrm{y}+\mathrm{z}}{4} \cos \frac{\mathrm{z}+\mathrm{x}}{4} \cos \frac{\mathrm{x}+\mathrm{y}}{4}$.
(6 marks)
(b) If $y=\ln (\cos 2 x)$, prove that $\frac{d^{2} y}{d x^{2}}+\left(\frac{d y}{d x}\right)^{2}+4=0$.
